Goujons en tungstène
Goujons en tungstène
Les goujons en tungstène sont connus pour leur extrême densité ; en raison de cet attribut unique, ils sont souvent utilisés pour équilibrer des pièces rotatives. La masse élevée du tungstène rend également ces vis radio-opaques. Cela permet aux goujons en tungstène de bloquer les radiations et d'être bien visibles aux rayons X, encore mieux que le plomb. Un autre attribut unique du tungstène est son point de fusion extrêmement élevé de 3420°C. La stabilité à haute température des goujons en tungstène les rend idéaux pour certains des environnements de four à vide les plus chauds. Au-delà de leur stabilité élevée en masse et en température, les goujons en tungstène sont également très résistants à la corrosion.
Les goujons en tungstène sont généralement fabriqués à partir d'alliages de tungstène conformes à la norme ASTM B777 et varient de 90 % à 97 % de tungstène pur, allié au nickel et au cuivre ou au nickel et au fer.
Ultra-haute densité et haute température/stabilité de résistance
· Très haute densité de 19,3 g/cc
· Radio-opaque aux rayons X et autres rayonnements
· Haute résistance à des températures extrêmement élevées (vide)
· Excellente résistance à la corrosion
· Propriétés mécaniques de clous en tungstène
· Matériau de tungstène Fiche de données
Applications
· L'industrie aérospatiale dépend des goujons en tungstène pour leur combinaison de haute densité et de résistance mécanique qui leur permet de réduire la taille physique des composants, offrant un meilleur contrôle de la répartition du poids pour les hélices, les systèmes inertiels et les systèmes de contrôle des fluides pour n'en nommer que quelques-uns.
· L'industrie du traitement thermique / des fours utilise des goujons en tungstène dans les fours sous vide à haute température en raison de la grande résistance et stabilité du tungstène à haute température.
· L'industrie pétrolière et gazière utilise des goujons en tungstène pour les propriétés de protection contre les rayonnements afin de protéger les équipements utilisés dans la détection du pétrole et du gaz, ainsi que la diagraphie en fond de trou pour la densité et la capacité de résister à une pression hydrostatique intense
· Les clous en tungstène jouent également un rôle dans la communauté médicale pour leurs faibles propriétés magnétiques ainsi que leurs propriétés radio-opaques.
Ressources: Spécifications de couple de tungstène
Attaches en tungstène : Boulons, Des noisettes, Des vis, Tiges filetées, Rondelles
Chimie et spécifications du tungstène
Spécifications du tungstène : ASTM B777, Mil Spec T-21014D
Applications
· L'industrie aérospatiale dépend des goujons en tungstène pour leur combinaison de haute densité et de résistance mécanique qui leur permet de réduire la taille physique des composants, offrant un meilleur contrôle de la répartition du poids pour les hélices, les systèmes inertiels et les systèmes de contrôle des fluides pour n'en nommer que quelques-uns.
· L'industrie du traitement thermique / des fours utilise des goujons en tungstène dans les fours sous vide à haute température en raison de la grande résistance et stabilité du tungstène à haute température.
· L'industrie pétrolière et gazière utilise des goujons en tungstène pour les propriétés de protection contre les rayonnements afin de protéger les équipements utilisés dans la détection du pétrole et du gaz, ainsi que la diagraphie en fond de trou pour la densité et la capacité de résister à une pression hydrostatique intense
· Les clous en tungstène jouent également un rôle dans la communauté médicale pour leurs faibles propriétés magnétiques ainsi que leurs propriétés radio-opaques.
Ressources: Spécifications de couple de tungstène
Attaches en tungstène : Boulons, Des noisettes, Des vis, Tiges filetées, Rondelles
Chimie et spécifications du tungstène
Spécifications du tungstène : ASTM B777, Mil Spec T-21014D
Alliage de tungstène ASTM-B777 | Classe 1 | Classe2 | Classe 3 | Classe 4 | CP Tungstène |
Composition du matériau | 90% DANS 6%Non 4% Cu | 92,5% W 5,25 % Ni 2,25 % Fe | 95% DANS 3,5% Ni 1,5% Cu | 97% DANS 2,1% Ni 0,9% Fe | 99,95 % W |
Densité | 17 g/cc | 17,5 g/cc | 18 g/cc | 18,5 g/cc | 19,3 g/cc |
Densité; Ibs/in3 | 0,6 | 0,6 | 0,7 | 0,7 | 0,697 |
Mil. Spéc. T-21014D | Classe 1 | Classe 2 | Classe 3 | Classe 4 |
|
Taper | Taper yl & III | Taper yl & III | Type II & III | Taper yl & III |
|
Dureté; Rockwell C | 24,0 | 26,0 | 27,0 | 28,0 | 31,0 |
Traction ultime Force; psi | 94 000 | 110 000 | 94 000 | 100 000 | 142 000 |
Limite d'élasticité, décalage de 0,2 % ; psi | 75 000 | 75 000 | 75 000 | 75 000 | 109 000 |
Module d'élasticité; psi | 40X10E6 | 47xlOE6 | 45x10E6 | 53 X10E6 | 58x10E6 |
Coefficient de dilatation thermique x | 5.4 | 4.6 | 4.4 | 4.5 | 4.2 |
Électrique Conductivité; %IACS | 14 | 13 | 16 | 17 | 18 |